Finite Automata Part Three

New Stuff!

- We know that any language for which there exists a DFA can also be recognized by an NFA.
- Why?
	- Every DFA essentially already *is* an NFA!

- We know that any language for which there exists a DFA can also be recognized by an NFA.
- $Why?$
	- Every DFA essentially already *is* an NFA!
- **Question**: Can any language recognized by an NFA also be recognized by a DFA?

- We know that any language for which there exists a DFA can also be recognized by an NFA.
- $Whv?$
	- Every DFA essentially already *is* an NFA!
- **Question**: Can any language recognized by an NFA also be recognized by a DFA?
- Surprisingly, the answer is *yes*!

- **Question**: Can any language recognized by an NFA also be recognized by a DFA?
- Surprisingly, the answer is *yes*!
	- To prove this, we need to:
		- Pick an arbitrary language for which an NFA exists
		- Describe how we would construct a DFA with the same language (in a generalizable way)
		- For the next few slides, we'll ponder how to approach that...

Thought Experiment: How would you simulate an NFA in software?

 $\begin{pmatrix} a \\ q_1 \end{pmatrix}$ b $\begin{pmatrix} q_2 \\ q_3 \end{pmatrix}$ a $\begin{pmatrix} a \\ a \end{pmatrix}$ start $\frac{1}{2}$ (q_3), q_0

 $\frac{a}{q_1}$ $\left(\frac{a}{q_1}\right)$ $\frac{b}{q_2}$ $\left(\frac{a}{q_2} \right)$ $\frac{a}{q_1}$ $\frac{\text{start}}{\longrightarrow}$ \cdot qo $\overline{)}$ $\left(\right. q_3\right)$

 $\vert \mathbf{b} \vert$ $\frac{a}{\sqrt{a}}$ $\mathbf a$ b $\mathbf a$

 $\begin{pmatrix} a \\ 4 \end{pmatrix}$ start $\left(\frac{1}{2}\right)$ $\left(\right. q_3\right)$

 $\frac{a}{\sqrt{a}}$ $\vert \hspace{.06cm} \vert$ $\mathbf a$ b $\mathbf a$

 \mathbf{a} D $\mathbf a$ b $\mathbf a$

 \mathbf{a} $\mathbf a$ D $\mathbf a$ D

 \mathbf{a} $\mathbf a$ b $\mathbf a$ D

 $\begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$ start q_0 $\left(\right. q_3\right)$

 $\frac{a}{\sqrt{a}}$ $\vert \vert$ $\mathbf a$ b $\mathbf a$

 $\begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$ start q_0 q_3

 $\begin{pmatrix} a \\ q_1 \end{pmatrix}$ start q_0 $\sqrt{(}q_3)$

 $\mathbf a$ b $\mathbf a$ b $\mathbf a$

 $\mathbf a$ b $\mathbf a$ b $\mathbf a$

 $\begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$ start q_0 q_3

 $\begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$ start q_0 q_3

 $\begin{pmatrix} a \\ q_1 \end{pmatrix}$ b $\begin{pmatrix} q_2 \\ q_3 \end{pmatrix}$ a $\begin{pmatrix} a \\ a \end{pmatrix}$ start q_0 $\left(\,q_3\right)$

 $\widehat{q_0}$ a $\widehat{q_1}$ b $\widehat{q_2}$ a \widehat{q} $\frac{1}{2}$

 $\frac{a}{q}$ (q) $\frac{b}{q}$ (q) $\frac{a}{q}$ start q_0 $\left(q_3 \right)$

 $\frac{a}{q}$ (q) $\frac{b}{q^2}$ (q) $\frac{a}{q}$ start q_0 q_3

 $\widehat{q_0}$ a $\widehat{q_1}$ b $\widehat{q_2}$ a \widehat{q} $\sqrt{(}q_3)$

$\widehat{q_0}$ a $\widehat{q_1}$ b $\widehat{q_2}$ a \widehat{q} $\frac{1}{2}$

 \sum $\overrightarrow{q_1}$ b $\left(\overrightarrow{q_2}\right)$ a start

 $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ $\sim 10^{-1}$ $\frac{a}{q_1}$ start q_0 q_3 ± 1

 \overrightarrow{a} $\left(\overrightarrow{q_1}\right)$ \overrightarrow{b} $\left(\overrightarrow{q_2}\right)$ \overrightarrow{a} start q_0 q_3

 $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ $\sim 10^{-1}$ $\frac{a}{q_1}$ start q_0 q_3 ± 1

 Σ

 $\sim 10^{-1}$ 91 start $\frac{a}{a}$ \mathbf{b} a q_2 q_0 $\sum_{i=1}^{n}$ q_3

 q_0 q_1 q_2 q_3 q_4 q_3 start $\begin{pmatrix} a & a \\ a & a \end{pmatrix}$ a $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ a

 q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_3 start $\left(\begin{array}{ccc} & a & b \end{array}\right)$ a

 q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_3 start $\left(\begin{array}{ccc} & a & b \end{array}\right)$ a

Your turn: What are the contents of the next row?

 q_0 q_1 q_2 q_3 q_4 start $\begin{pmatrix} a & a \end{pmatrix}$ a $\begin{pmatrix} a & b \end{pmatrix}$ a

 q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_3 start $\left(\begin{array}{ccc} & a & b \end{array}\right)$ a

 $\sim 10^{-1}$ start $\left(\begin{array}{ccc} & & a \\ a & & a \end{array}\right)$ b a q_0 q_1 q_2 q_3 q_4 q_3 ± 1

start $\begin{pmatrix} a & a \\ a & a \end{pmatrix}$ a $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ a q_0 q_1 q_2 q_3 q_4 q_3 ± 1

 q_0 q_1 q_2 q_3 q_4 q_3 start $\begin{pmatrix} a & a \\ a & a \end{pmatrix}$ a $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ a

 q_0 q_1 q_2 q_3 q_4 q_3 start $\begin{pmatrix} a & a \\ a & a \end{pmatrix}$ a $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ a

 q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_3 start $\left(\begin{array}{ccc} & a & b \end{array}\right)$ a

 q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_3 start $\left(\begin{array}{ccc} & a & b \end{array}\right)$ a

q_0 q_1 q_2 q_3 q_4 q_3 start $\begin{pmatrix} a & a \end{pmatrix}$ a $\begin{pmatrix} a & b \end{pmatrix}$ a

 q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_3 start $\left(\begin{array}{ccc} & a & b \end{array}\right)$ a

 q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_3 start $\left(\begin{array}{ccc} & a & b \end{array}\right)$ a

 $\{q_0\}$ $\left\{\right.$ $\left. \begin{array}{c} \mathbf{a} \\ \mathbf{a} \end{array}\right\}$ $\{q_0, q_1\}$ {*q*₀, *q*₂} b a b a b b a start {*q*₀, *q*₁, *q*₃} a

 $\{q_0\}$ $\left\{\right.$ $\left. \begin{array}{c} \mathbf{a} \\ \mathbf{a} \end{array}\right\}$ $\{q_0, q_1\}$ {*q*₀, *q*₂} b a b a b b a start {*q*₀, *q*₁, *q*₃} a

The Subset Construction

- This procedure for turning an NFA for a language *L* into a DFA for a language *L* is called the *subset construction*.
	- It's sometimes called the *powerset construction*; it's different names for the same thing!
- Intuitively:
	- Each state in the DFA corresponds to a set of states from the NFA.
	- Each transition in the DFA corresponds to what transitions would be taken in the NFA when using the massive parallel intuition.
	- The accepting states in the DFA correspond to which sets of states would be considered accepting in the NFA when using the massive parallel intuition.
- There's an online *Guide to the Subset Construction* with a more elaborate example involving ε-transitions and cases where the NFA dies; check that for more details.

The Subset Construction

- In converting an NFA to a DFA, the DFA's states correspond to sets of NFA states.
- *Useful fact:* $|\wp(S)| = 2^{|S|}$ for any finite set *S*.
- In the worst-case, the construction can result in a DFA that is *exponentially larger* than the original NFA.
- **Question to ponder:** Can you find a family of languages that have NFAs of size *n*, but no DFAs of size less than 2*n*?

Why This Matters

- We now have two perspectives on regular languages:
	- Regular languages are languages accepted by DFAs.
	- Regular languages are languages accepted by NFAs.
- We can now reason about the regular languages in two different ways.

Properties of Regular Languages

- \bullet If L_1 and L_2 are languages over the alphabet Σ , the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.
- \bullet If L_1 and L_2 are regular languages, is $L_1 \cup L_2?$

- \bullet If L_1 and L_2 are languages over the alphabet Σ , the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.
- \bullet If L_1 and L_2 are regular languages, is $L_1 \cup L_2?$

- \bullet If L_1 and L_2 are languages over the alphabet Σ , the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.
- \bullet If L_1 and L_2 are regular languages, is $L_1 \cup L_2?$

- \bullet If L_1 and L_2 are languages over the alphabet Σ , the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.
- \bullet If L_1 and L_2 are regular languages, is $L_1 \cup L_2?$

- \bullet If L_1 and L_2 are languages over the alphabet Σ , the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.
- \bullet If L_1 and L_2 are regular languages, is $L_1 \cup L_2?$

- If L_{1} and L_{2} are languages over Σ , then $L_{1} \cap L_{2}$ is the language of strings in both $L_{_1}$ and $L_{_2}.$
- Question: If $L^{}_1$ and $L^{}_2$ are regular, is $L^{}_1 \cap L^{}_2$ regular as well?

- If L_{1} and L_{2} are languages over Σ , then $L_{1} \cap L_{2}$ is the language of strings in both $L_{_1}$ and $L_{_2}.$
- Question: If $L^{}_1$ and $L^{}_2$ are regular, is $L^{}_1 \cap L^{}_2$ regular as well?

 $L_{\overline{1}}$

 $L_{\overline{2}}$

- If L_1 and L_2 are languages over Σ , then $L_1 \cap L_2$ is the language of strings in both $L_{_1}$ and $L_{_2}.$
- Question: If $L^{}_1$ and $L^{}_2$ are regular, is $L^{}_1 \cap L^{}_2$ regular as well?

 L_{1} L_{2}

- If L_1 and L_2 are languages over Σ , then $L_1 \cap L_2$ is the language of strings in both $L_{_1}$ and $L_{_2}.$
- Question: If $L^{}_1$ and $L^{}_2$ are regular, is $L^{}_1 \cap L^{}_2$ regular as well?

The Intersection of Two Languages

- If L_1 and L_2 are languages over Σ , then $L_1 \cap L_2$ is the language of strings in both $L_{_1}$ and $L_{_2}.$
- Question: If $L^{}_1$ and $L^{}_2$ are regular, is $L^{}_1 \cap L^{}_2$ regular as well?

Concatenation

String Concatenation

- If $w \in \Sigma^*$ and $x \in \Sigma^*$, the *concatenation* of w and x, denoted *wx*, is the string formed by tacking all the characters of *x* onto the end of *w*.
- Example: if $w =$ quo and $x =$ kka, the concatenation *wx* = quokka*.*
- \cdot This is analogous to the $+$ operator for strings in many programming languages.
- Some facts about concatenation:
	- The empty string ε is the *identity element* for concatenation:

 $w\epsilon = \epsilon w = w$

● Concatenation is *associative*:

 $wxy = w(xy) = (wx)y$

Concatenation

• The *concatenation* of two languages L_1 and L_2 over the alphabet Σ is the language

 $L_1L_2 = \{ wx \in \Sigma^* \mid w \in L_1 \land x \in L_2 \}$

Concatenation Example

- Let $\Sigma = \{ a, b, ..., z, A, B, ..., Z \}$ and consider these languages over Σ :
	- $Noun = \{ Puppy, Rainbow, What$
	- \cdot *Verb* = { Hugs, Juggles, Loves, ... }
	- *The* = $\{ The \}$
- The language *TheNounVerbTheNoun* is
	- { ThePuppyHugsTheWhale, TheWhaleLovesTheRainbow, TheRainbowJugglesTheRainbow, … }

Concatenation

• The *concatenation* of two languages L_1 and L_2 over the alphabet Σ is the language

 $L_1L_2 = \{ wx \in \Sigma^* \mid w \in L_1 \land x \in L_2 \}$

- Two views of L_1L_2 :
	- The set of all strings that can be made by concatenating a string in *L*₁ with a string in *L*₂.
	- The set of strings that can be split into two pieces: a piece from *L*₁ and a piece from *L*₂.

 T and T is closely related to, but different than, the Cartesian product. This is closely related to, but different than, the Cartesian product.

Question to ponder: In what ways are concatenations similar to Cartesian products? In what ways are they different:
different: *Question to ponder:* In what ways are concatenations similar to Cartesian products? In what ways are they different?

- \bullet If L_1 and L_2 are regular languages, is $L_1 L_2 ?$
- Intuition can we split a string *w* into two strings xy such that $x \in L_1$ and $y \in L_2$?
- *Idea*:

- \bullet If L_1 and L_2 are regular languages, is $L_1 L_2 ?$
- Intuition can we split a string *w* into two strings xy such that $x \in L_1$ and $y \in L_2$?
- *Idea*:

Machine for $L_{_1}$

 r_{1} Machine for L_{2}

- \bullet If L_1 and L_2 are regular languages, is $L_1 L_2 ?$
- Intuition can we split a string *w* into two strings xy such that $x \in L_1$ and $y \in L_2$?
- *Idea*:

Machine for L_1 Machine for L_2

- \bullet If L_1 and L_2 are regular languages, is $L_1 L_2 ?$
- Intuition can we split a string *w* into two strings xy such that $x \in L_1$ and $y \in L_2$?
- *Idea*:

Machine for $L₁$

Machine for L_1 Machine for L_2

- \bullet If L_1 and L_2 are regular languages, is $L_1 L_2 ?$
- Intuition can we split a string *w* into two strings xy such that $x \in L_1$ and $y \in L_2$?
- *Idea*:

Machine for *L*₁ Machine for *L*₂ Machine for $L₂$

- \bullet If L_1 and L_2 are regular languages, is $L_1 L_2 ?$
- Intuition can we split a string *w* into two strings xy such that $x \in L_1$ and $y \in L_2$?
- *Idea*:
	- Run a DFA/NFA for L_1 on w .
	- Whenever it reaches an accepting state, optionally hand the rest of w to a DFA/NFA for L_2 .
	- If the automaton for L_2 accepts the rest, $w \in L_1L_2$.
	- \bullet If the automaton for L_2 rejects the remainder, the split was incorrect.

-
-
-
- -
	-
	-

Lots and Lots of Concatenation

- Consider the language $L = \{aa, b\}$
- LL is the set of strings formed by concatenating pairs of strings in *L*.

$\{$ aaaa, aab, baa, bb $\}$

• LLL is the set of strings formed by concatenating triples of strings in *L*.

```
\{ aaaaaa, aaaab, aabaa, aabb, baaaa, baab, bbaa, bbb\}
```
• *LLLL* is the set of strings formed by concatenating quadruples of strings in *L*.

```
{ aaaaaaaa, aaaaaab, aaaabaa, aaaabb, aabaaaa,
aabaab, aabbaa, aabbb, baaaaaa, baaaab, baabaa,
      baabb, bbaaaa, bbaab, bbbaa, bbbb}
```
Language Exponentiation

- We can define what it means to "exponentiate" a language as follows:
- \bullet *L*⁰ = {ε}
	- Intuition: The only string you can form by gluing no strings together is the empty string.
	- Notice that $\{\epsilon\} \neq \emptyset$. Can you explain why?
- $L^{n+1} = LL^{n}$
	- Idea: Concatenating $(n+1)$ strings together works by concatenating *n* strings, then concatenating one more.
- **Question to ponder:** Why define $L^0 = {\varepsilon}$?
- **Question to ponder:** What is Ø⁰?

The Kleene Closure

• An important operation on languages is the *Kleene Closure*, which is defined as

 $L^* = \{ w \in \Sigma^* \mid \exists n \in \mathbb{N}, w \in L^n \}$

• Mathematically:

 $w \in L^* \leftrightarrow \exists n \in \mathbb{N}, w \in L^n$

- Intuitively, L^* is the language all possible ways of concatenating zero or more strings in *L* together, possibly with repetition.
- **Question to ponder:** What is Ø*?

The Kleene Closure

If $L = \{ a, bb \}$, then $L^* = \{$ ε, a, bb,

aa, abb, bba, bbbb,

aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb,

…

}
Think of L^{*} as the set of strings you can make if you have a collection of stamps – one for each string in *L* – and you form every possible string that can be made fom those stamps. Think of L* as the set of strings you can make if you have a collection of stamps – one for each string in *L* – and you form every possible string that can be made from those stamps.

- If *L* is regular, is L^* necessarily regular?
- \triangle A Bad Line of Reasoning: \triangle
	- \bullet $L^0 = \{ \varepsilon \}$ is regular.
	- $L^1 = L$ is regular.
	- $L^2 = LL$ is regular
	- $L^3 = L (LL)$ is regular
	- \bullet …
	- Regular languages are closed under union.
	- So the union of all these languages is regular.

∞ is finite $^{\sim}$ not

Reasoning About the Infinite

- If a series of finite objects all have some property, the "limit" of that process *does not* necessarily have that property.
- In general, it is not safe to conclude that some property that always holds in the finite case must hold in the infinite case.
	- (This is why calculus is interesting).
- So our earlier argument $(L^* = L^0 \cup L^1 \cup ...)$ isn't going to work.
- We need a different line of reasoning.

Idea: Can we directly convert an NFA for language *L* to an NFA for language *L**?

Closure Properties

- **Theorem:** If L_1 and L_2 are regular languages over an alphabet Σ , then so are the following languages:
	- \overline{L}_1
	- *L*₁ ∪ *L*₂
	- *L*₁ ∩ *L*₂
	- \bullet L_1L_2
	- $I_{.1}$ *
- These properties are called *closure properties of the regular languages*.

Next Time

- *Regular Expressions*
	- Building languages from the ground up!
- *Thompson's Algorithm*
	- A UNIX Programmer in Theoryland.
- *Kleene's Theorem*
	- From machines to programs!